Пути и условия организации эвристического обучения в школе

Страница 2

Задача. «Докажите, что для того, чтобы найти квадрат двузначного числа, оканчивающегося цифрой 5 и имеющего п десятков достаточно число десятков п умножить на п + 1 и к результату приписать 25» безусловно имеет определенную познавательную ценность: учащиеся знакомятся с правилом возведения в квадрат двузначных чисел, оканчивающихся на 5. Но роль этой задачи возрастет, если ее сформулировать так: «Найдите и обоснуйте правило возведения в квадрат двузначных чисел, оканчивающихся цифрой 5».

Учащиеся, не знакомые с методом математический индукции, используемым для доказательства этих формул, именно с помощью такого рода задач поймут необходимость изучения этого метода в дальнейшем.

Мы исходим из того, что необходимо на уроках систематически использовать задачи, способствующие целенаправленному развитию творческого мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников наблюдательности, творчества и оригинальности.

Эффективное развитие математических способностей у учащихся невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов, софизмов.

Эвристическая задача - лучший способ мгновенно возбудить внимание и учебный интерес, приблизить возможность открытия. Эвристические задачи могут быть предложены как для классной, так и для домашней работы, причем ученик должен иметь право выбора любого варианта задания.

Весьма интересна с точки зрения применения эвристического метода в школе книга американского педагога У. Сойера «Прелюдия к математике». «Для всех математиков, - пишет Сойер, - характерна дерзость ума. Математик не любит, когда ему о чем-нибудь рассказывают, он сам хочет дойти до всего». Эта «дерзость ума», по словам Сойера, особенно сильно проявляется у детей.

«Если вы, например, преподаете геометрию 9-10-летним ребятам, - говорит Сойер, - и рассказываете, что никто еще не смог разделить угол на три равные части при помощи линейки и циркуля, вы непременно увидите, что один - два мальчика останутся после уроков и будут пытаться найти решение. То обстоятельство, что в течение 2000 лет никто не решил эту задачу, не помешает им надеяться, что они смогут это сделать в течение часового перерыва на обед. Это, конечно, не очень скромно, но и не свидетельствует об их самонадеянности. Они просто готовы принять любой вызов. А ведь в действительности уже доказано, что невозможно разделить угол на три равные части при помощи линейки и циркуля. Их попытка найти решение - того же рода, что попытка представить «корень из двух» в виде рациональной дроби p/q. Хороший ученик всегда старается забежать вперед. Если вы ему объясните, как решать квадратное уравнение дополнением до полного квадрата, он непременно захочет узнать, можно ли решить кубическое уравнение дополнением до полного куба. Вот это желание исследовать является отличительной чертой математика. Это одна из сил, содействующих росту математика. Математик получает удовольствие от знаний, которыми он уже овладел, и всегда стремится к новым знаниям».

Другим необходимым качеством математика является интерес к закономерностям. Закономерность - это наиболее стабильная характеристика постоянно меняющегося мира. Сегодняшний день не может быть похожим на вчерашний. Нельзя увидеть дважды одно и то же лицо под одним и тем же углом зрения. Закономерности встречаются уже в самом начале арифметики. В таблице умножения имеется немало элементарных примеров закономерностей. Вот один из них. Обычно дети любят умножать на 2 и на 5, потому что последние цифры ответа легко запомнить: при умножении на 2 всегда получаются четные цифры, а при умножении на 5, еще проще, всегда 0 или 5. Но даже в умножении на 7 есть свои закономерности. Если мы посмотрим последние цифры произведений 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, т.е. на 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, то увидим, что разность между последующей и предыдущей цифрами составляет:-3; +7;-3;-3; +7; -3; -3, -3. В этом ряду чувствуется совершенно определенный ритм.

Если прочесть конечные цифры ответов при умножении на 7 в обратном порядке, то мы получаем конечные цифры от умножения на 3. Даже в начальной школе можно развить навык наблюдения за математическими закономерностями.

Страницы: 1 2 


Информация о ообразовании:

Содержание элективных курсов по математике
Содержание элективных курсов определено программой, разработанной учителем и предусматривает изучение разделов: «Избранные вопросы математики», «Математика в приложениях» и др. К программе прилагается список литературы, рекомендованный для изучения темы элективного курса, а также примерное содержан ...

Современное патриотическое воспитание
Патриоти́зм (греч. πατριώτης — соотечественник, πατρίς — отечество) — нравственный принцип, социальное чувство, содержанием которого является любовь к отечеству и готовность подчинить его интересам свои частные интересы ...

Организация условий проведения педагогического исследования
Для педагогического исследования огромное значение имеет организация условий его проведения. Необходимо учитывать то обстоятельство, что исследователь имеет дело с детьми, поэтому одним из основных требований к нему является «не навреди». Отсюда следует необходимость тщательного обдумывания всех во ...

Категории

Copyright © 2019 - All Rights Reserved - www.agepedagog.ru