Задача. «Докажите, что для того, чтобы найти квадрат двузначного числа, оканчивающегося цифрой 5 и имеющего п десятков достаточно число десятков п умножить на п + 1 и к результату приписать 25» безусловно имеет определенную познавательную ценность: учащиеся знакомятся с правилом возведения в квадрат двузначных чисел, оканчивающихся на 5. Но роль этой задачи возрастет, если ее сформулировать так: «Найдите и обоснуйте правило возведения в квадрат двузначных чисел, оканчивающихся цифрой 5».
Учащиеся, не знакомые с методом математический индукции, используемым для доказательства этих формул, именно с помощью такого рода задач поймут необходимость изучения этого метода в дальнейшем.
Мы исходим из того, что необходимо на уроках систематически использовать задачи, способствующие целенаправленному развитию творческого мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников наблюдательности, творчества и оригинальности.
Эффективное развитие математических способностей у учащихся невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов, софизмов.
Эвристическая задача - лучший способ мгновенно возбудить внимание и учебный интерес, приблизить возможность открытия. Эвристические задачи могут быть предложены как для классной, так и для домашней работы, причем ученик должен иметь право выбора любого варианта задания.
Весьма интересна с точки зрения применения эвристического метода в школе книга американского педагога У. Сойера «Прелюдия к математике». «Для всех математиков, - пишет Сойер, - характерна дерзость ума. Математик не любит, когда ему о чем-нибудь рассказывают, он сам хочет дойти до всего». Эта «дерзость ума», по словам Сойера, особенно сильно проявляется у детей.
«Если вы, например, преподаете геометрию 9-10-летним ребятам, - говорит Сойер, - и рассказываете, что никто еще не смог разделить угол на три равные части при помощи линейки и циркуля, вы непременно увидите, что один - два мальчика останутся после уроков и будут пытаться найти решение. То обстоятельство, что в течение 2000 лет никто не решил эту задачу, не помешает им надеяться, что они смогут это сделать в течение часового перерыва на обед. Это, конечно, не очень скромно, но и не свидетельствует об их самонадеянности. Они просто готовы принять любой вызов. А ведь в действительности уже доказано, что невозможно разделить угол на три равные части при помощи линейки и циркуля. Их попытка найти решение - того же рода, что попытка представить «корень из двух» в виде рациональной дроби p/q. Хороший ученик всегда старается забежать вперед. Если вы ему объясните, как решать квадратное уравнение дополнением до полного квадрата, он непременно захочет узнать, можно ли решить кубическое уравнение дополнением до полного куба. Вот это желание исследовать является отличительной чертой математика. Это одна из сил, содействующих росту математика. Математик получает удовольствие от знаний, которыми он уже овладел, и всегда стремится к новым знаниям».
Другим необходимым качеством математика является интерес к закономерностям. Закономерность - это наиболее стабильная характеристика постоянно меняющегося мира. Сегодняшний день не может быть похожим на вчерашний. Нельзя увидеть дважды одно и то же лицо под одним и тем же углом зрения. Закономерности встречаются уже в самом начале арифметики. В таблице умножения имеется немало элементарных примеров закономерностей. Вот один из них. Обычно дети любят умножать на 2 и на 5, потому что последние цифры ответа легко запомнить: при умножении на 2 всегда получаются четные цифры, а при умножении на 5, еще проще, всегда 0 или 5. Но даже в умножении на 7 есть свои закономерности. Если мы посмотрим последние цифры произведений 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, т.е. на 7, 4, 1, 8, 5, 2, 9, 6, 3, 0, то увидим, что разность между последующей и предыдущей цифрами составляет:-3; +7;-3;-3; +7; -3; -3, -3. В этом ряду чувствуется совершенно определенный ритм.
Если прочесть конечные цифры ответов при умножении на 7 в обратном порядке, то мы получаем конечные цифры от умножения на 3. Даже в начальной школе можно развить навык наблюдения за математическими закономерностями.
Информация о ообразовании:
Содержание учебного материала как источник познавательного интереса
Для реализации объективных возможностей формирования развития познавательного интересов, заложенных в содержание учебного материал, необходимо при подготовке к учебному году, составления перспективно -тематических планов, планов уроков с этой точки зрения проанализировать содержание тем курса. Суще ...
Решение задач на совместное движение
Начиная с 5-го класса, ученики часто встречаются с этими задачами. Еще в начальной школе учащимся дается понятие «общей скорости». В результате у них формируются не совсем правильные представления о скорости сближения и скорости удаления (данной терминологии в начальной школе нет). Чаще всего, реша ...
Формы занятий и контроль знаний на элективных курсах по математике
Введение профильного обучения, а особенно элективных курсов, в программу основной школы, несомненно, потребует разнообразия форм и методов обучения, так как профильное обучение – это не только дифференцирование содержания образования, но, как правило, и по-другому построенный учебный процесс. При в ...