При решении этих задач нужно выяснить с учащимися, что возможны два случая:
объем выполненной работы известен;
объем выполненной работы неизвестен.
Первые задачи удобно решать, используя таблицы.
Пример. Два токаря вместе изготовили 350 деталей. Первый токарь делал в день 40 деталей и работал 5 дней, второй работал на 2 дня меньше. Сколько деталей в день делал второй токарь?
Составим таблицу (см. табл.3).
Таблица 3
Условие задачи
Производительность |
Время |
Количество | |
1т. |
40 деталей |
5 дней |
|
2т. |
? |
на 2 дня меньше |
Объяснение. Так как известны производительность и время работы первого токаря, найдем количество деталей, изготовленных первым токарем.
40*5 = 200 (дет.) – изготовил первый токарь.
Работая с таблицей, делаем вывод, что можно найти, сколько деталей изготовил второй токарь.
350 – 200 = 150 (дет.) – изготовил второй токарь.
Обратив внимание на опорные слова «на…меньше», делаем вывод, что можно найти, сколько дней работал второй.
5 – 2 = 3 (дня) – работал второй токарь.
Зная количество и время работы второго токаря, находим его производительность:
150 / 3 = 50 (дет.) – изготовлял второй токарь в день.
Уже при решении первых задач, нужно приучать детей к правильной терминологии.
Для решения задач второго типа, текст задачи можно проиллюстрировать чертежами, что помогает учащимся зрительно видеть задачу.
Пример 1. Новая машина может выкопать канаву за 8 часов, а старая – за 12. Новая работала 3 часа, а старая - 5 часов. Какую часть канавы осталось выкопать?
Рис.13. Графическое изображение задачи из примера №1
Дадим наглядное представление этих задач. Условимся, что объем выполненной работы неизвестен, поэтому принимаем его за 1 и изображаем в виде отрезка, но отрезков будет три, так как возможны три случая:
работает одна старая машина;
работает одна новая машина;
работают вместе обе машины.
Выясним, почему отрезки равной длины (обе машины выполняют одну и ту же работу).
Разбор задачи. На сколько равных частей делим первый отрезок? На 8, так как работа выполняется за 8 часов. Что показывает 1 часть? Какую часть работы выполняет новая машина за 1 час, т.е. какова ее производительность?
Так как новая машина работала 3 часа, то выполнила части все работы. Отмечаем на третьем отрезке -
.
Аналогичные рассуждения проводим, рассматривая старую машину, и отмечаем на третьем отрезке - .
Далее рассматривается третий нижний отрезок, и по нему выясняется, как найти оставшуюся часть, т.е., отрезок, обозначенный знаком вопроса.
В связи с экономией времени деление отрезков производится «на глаз», хотя очень полезно показать, как можно разделить быстро на 4 равные части (отрезок делится пополам, а затем каждая часть еще пополам). Аналогично деление на 8 и т.д. На 6 частей – сначала пополам, а потом каждую часть - на три.
Пример №2. Два кузнеца, работая вместе, могут выполнить работу за 8 часов. За сколько часов может выполнить работу первый кузнец, если второй выполняет ее за 12 часов?
Изображая чертеж, мы проводим те же рассуждения, что и в предыдущей задаче.
Рис.14. Графическое изображение задачи из примера №2
Разбор задачи. Первый отрезок делим на 8 равных частей, так как оба выполняют работу за 8 часов. Одна часть показывает, какую часть работы они выполняют вместе за 1 час, т.е., их совместную производительность. Аналогичные рассуждения проводим для расчета производительности второго кузнеца.
Зная их совместную производительность и производительность второго, можно найти производительность первого.
Информация о ообразовании:
Классификация занятий в ДОУ
В настоящее время широко используется следующая классификация занятий с детьми дошкольного возраста. Классификация занятий в ДОУ (по С.А. Козловой) Основание классификации Название 1. Дидактическая задача 1. Занятия усвоения новых знаний, умений; 2. Занятия закрепления ранее приобретенных знаний и ...
Методы преподавания изобразительного искусства в Древней Греции
Изучив методы преподавания в Др. Египте, греки подошли по-новому к проблеме обучения и воспитания. Они призывали внимательно изучать земную жизнь, а не загробную. В 432г. до н. э. в Сикионе скульптор Поликлет написал сочинение о пропорциональной закономерности человеческого тела, изучал его внутрен ...
Закономерности и принципы воспитательного процесса
Закономерности – необходимые, существенные, устойчивые, повторяющиеся связи м/у явлениями и процессами. Принципы – это основные положения, сформировавшиеся в виде требований к организации педагогического процесса. Метопринципы. Принцип центрации воспитания на развития личности – направленность на р ...