Виды арифметических задач

Страница 1

Все арифметические задачи по числу действий, выполняемых для их решения, делятся на простые и составные. Задача, для решения которой надо выполнить один раз арифметическое действие, называется простой. Задача, для решения которой надо выполнить несколько действий называется составной.

Простые задачи в системе обучения математике играют чрезвычайно важную роль. С помощью решения простых задач формируется одно из центральных понятий начального курса математики – понятие об арифметических действиях и ряд других понятий. Умение решать простые задачи является подготовительной ступенью овладения учащимися умением решать составные задачи, так как решение составной задачи сводится к решению ряда простых задач. При решении простых задач происходит первое знакомство с задачей и её составными частями.

В связи с решением простых задач дети овладевают основными приемами работы над задачей.

На первом этапе знакомства детей с простой задачей перед учителем возникает одновременно несколько довольно сложных проблем:

Нужно, чтобы в сознание детей вошли и укрепились вторичные сигналы к определенным понятиям, связанным с задачей.

Выработать умение видеть в задаче данные числа и искомое число.

Научить сознательно выбирать действия и определять компоненты этих действий. Разрешение указанных проблем нельзя расположить в определенной последовательности. В занятиях с детьми довольно часто приходится добиваться результатов не одного за другим, а идти к достижению нескольких целей одновременно, постепенно развивая и расширяя достигнутые успехи в нескольких направлениях.

При знакомстве с задачами и их решением нельзя избежать специфических терминов, но дети должны их понимать, чтобы осознавать смысл задачи. Работа с детьми по усвоению ими терминологии начинается с первых дней занятий в школе и ведётся систематически на протяжении всех лет обучения.

Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению её на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.

Рассмотрим в качестве примера задачу: «В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько детей дежурило в школе?».

Эта задача включает 2 простых:

В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько мальчиков дежурило в школе?

В школе дежурили 8 девочек и 10 мальчиков. Сколько всего детей дежурило в школе?

Как видим, число, которое было искомым в первой задаче, стало данным во второй.

Последовательное решение этих задач является решением составной задачи: 1) 8 + 2 = 10; 2) 8 + 10 = 18.

Запись решения составной задачи с помощью составления по ней выражения позволяет сосредоточить внимание учащихся на логической стороне работы над задачей, видеть ход решения её в целом. В то же время дети учатся записывать план решения задачи и экономить время.

Запись решения многих составных задач и составление по ним выражения связаны с использованием скобок. Скобки – математический знак, употребляемый для порядка действий. В скобки заключается то действие, которое нужно выполнить раньше.

В решении составной задачи появилось существенно новое сравнительно с решением простой задачи: здесь устанавливается не одна связь, а несколько, в соответствии с которым вырабатываются арифметические действия. Поэтому проводится специальная работа по ознакомлению детей с составной задачей, а также по формированию у них умений решать составные задачи.

И все-таки, почему же этот материал труден для учащихся? Разрозненные указания учителей по решению задач быстро забываются учениками, они не приобретают навыков решения текстовых задач. Без конкретной программы деятельности учащихся, без алгоритмов, системы приемов поиска решения задачи трудно организовать процесс решения задач. Поэтому необходимы «ускорители» для приобретения навыков решения : иллюстрация, схемы, таблицы, дополнительные символы, условные знаки, стрелки, способствующие более конкретному наглядному представлению об отношениях между частями задачи, связях между величинами, порядке этих связей. Это позволяет стимулировать у учащихся развитие наглядно-действенного мышления и на основе его в дальнейшем – образного мышления. Поиск решения текстовой задачи путем составления таблицы дает возможность охватить взором отношения между элементами всей задачи.

Страницы: 1 2


Информация о ообразовании:

"Мудрая власть коллектива" по В.А. Сухомлинскому
Ответ на вопрос, мучивший Макаренко, удалось дать в практике своей работы В.А. Сухомлинскому. Он реализовал принцип заботы о каждом члене коллектива, о его здоровье, настроении и индивидуальных задатках. Воспитание любовью, уважением, разумом считал В.А. Сухомлинский главным в превращении ребёнка в ...

Логопедическая работа по преодолению нарушений словообразования и словоизменения у дошкольников с общим недоразвитием речи III уровня
Целью формирующего эксперимента было развитие словообразования и словоизменения посредством дидактических игр При подборе дидактических игр учитывались возрастные особенности старших дошкольников. Материал формирующего эксперимента представлен ниже. Игры для закрепления формы множественного числа: ...

Приемы активизации познавательной деятельности
познавательный интерес обучение школьник В процессе приобретения учащимися знаний, умений и навыков важное место занимает их познавательная активность, умение учителя активно руководить ею. Со стороны учителя учебный процесс может быть управляемым пассивно и активно. Пассивно управляемым процессом ...

Категории

Copyright © 2019 - All Rights Reserved - www.agepedagog.ru