Способы определения понятий

По логической структуре определения делятся на конъюнктивные (существенные признаки соединяются союзом "и") и дизъюнктивные (существенные признаки соединяются союзом "или").

Выделение существенных признаков, зафиксированных в определении, и зафиксированных связей между ними называется логико-математическим анализом определения.

Существует подразделение определений на дескриптивные и конструктивные.

Дескриптивные – описательные или косвенные определения, имеющие, как правило, вид: «объект называется…, если он обладает…». Из таких определений не следует факт существования данного объекта, поэтому все подобные понятия требуют доказательства существования. Среди них выделяют следующие способы определений понятий:

Через ближайший род и видовое отличие. (Ромбом называется параллелограмм, две смежные стороны которого равны. Родовым выступает понятие параллелограмма, из которого определяемое понятие выделяется посредством одного видового отличия).

Определения-соглашения – определения, в которых свойства понятий выражаются с помощью равенств или неравенств.

Аксиоматические определения. В самой науке математике используются часто, а в школьном курсе редко и для интуитивно ясных понятий. (Площадь фигуры – величина, численное значение которой удовлетворяет условиям: S(F)>0; F1=F2ÞS(F1)=S(F2); F=F1ÈF2, F1ÇF2=ÆÞ S(F)=S(F1)+S(F2); S(E)=1.)

Определения через абстракцию. Прибегают к такому определению понятия, когда другое трудно или невозможно осуществить (например, натуральное число).

Определение-отрицание – определение, в котором фиксируется не наличие свойства, а его отсутствие (например, параллельные прямые).

Конструктивные (или генетические) – это определения, в которых указывается способ получения нового объекта (например, сферой называется поверхность, полученная вращением полуокружности вокруг своего диаметра). Среди таких определений иногда выделяют рекурсивные – определения, указывающие некоторый базисный элемент какого-либо класса и правило, по которому можно получить новые объекты того же класса (например, определение прогрессии).

1.4 Методические требования к определению понятия

Требование научности.

Требование доступности.

Требование соизмеримости (объём определяемого понятия должен быть равен объёму определяющего понятия). Нарушение данного требования ведёт либо к очень широкому, либо к очень узкому определению.

Определение не должно содержать порочного круга.

Определения должны быть ясными, точными, не содержать метафорических выражений.

Требование минимальности.


Информация о ообразовании:

Особенности организации Недели географии и виды мероприятий
Неделя географии в школе является комплексным мероприятием, сочетающим в себе разнообразные формы внеурочной работы: вечера, конференции, смотры-конкурсы географических знаний, конкурсы газет, рефератов и т.д. Проведение недели географии в школе позволяет показать, как поставлена в школе учебная и ...

Взаимодействие доу с неполными семьями в современных социально-экономических условиях
Российская система дошкольного образования, по признанию специалистов всего мира, является уникальной. Однако в новых социально-экономических условиях перехода к рыночным отношениям, с одной стороны, возникла ситуация сокращения сети ДОУ, уменьшения бюджетного финансирования на их развитие. С друго ...

Социальная педагогика как наука и как сфера практической деятельности
Объект и предмет исследования социальной педагогики. Особенности развития социальной педагогики. Из истории развития социальной педагогики за рубежом. Социальная педагогика и социальная работа. Наука, как известно, это сфера человеческой деятельности, направленной на выработку и систематизацию новы ...

Категории

Copyright © 2022 - All Rights Reserved - www.agepedagog.ru