Способы определения понятий

По логической структуре определения делятся на конъюнктивные (существенные признаки соединяются союзом "и") и дизъюнктивные (существенные признаки соединяются союзом "или").

Выделение существенных признаков, зафиксированных в определении, и зафиксированных связей между ними называется логико-математическим анализом определения.

Существует подразделение определений на дескриптивные и конструктивные.

Дескриптивные – описательные или косвенные определения, имеющие, как правило, вид: «объект называется…, если он обладает…». Из таких определений не следует факт существования данного объекта, поэтому все подобные понятия требуют доказательства существования. Среди них выделяют следующие способы определений понятий:

Через ближайший род и видовое отличие. (Ромбом называется параллелограмм, две смежные стороны которого равны. Родовым выступает понятие параллелограмма, из которого определяемое понятие выделяется посредством одного видового отличия).

Определения-соглашения – определения, в которых свойства понятий выражаются с помощью равенств или неравенств.

Аксиоматические определения. В самой науке математике используются часто, а в школьном курсе редко и для интуитивно ясных понятий. (Площадь фигуры – величина, численное значение которой удовлетворяет условиям: S(F)>0; F1=F2ÞS(F1)=S(F2); F=F1ÈF2, F1ÇF2=ÆÞ S(F)=S(F1)+S(F2); S(E)=1.)

Определения через абстракцию. Прибегают к такому определению понятия, когда другое трудно или невозможно осуществить (например, натуральное число).

Определение-отрицание – определение, в котором фиксируется не наличие свойства, а его отсутствие (например, параллельные прямые).

Конструктивные (или генетические) – это определения, в которых указывается способ получения нового объекта (например, сферой называется поверхность, полученная вращением полуокружности вокруг своего диаметра). Среди таких определений иногда выделяют рекурсивные – определения, указывающие некоторый базисный элемент какого-либо класса и правило, по которому можно получить новые объекты того же класса (например, определение прогрессии).

1.4 Методические требования к определению понятия

Требование научности.

Требование доступности.

Требование соизмеримости (объём определяемого понятия должен быть равен объёму определяющего понятия). Нарушение данного требования ведёт либо к очень широкому, либо к очень узкому определению.

Определение не должно содержать порочного круга.

Определения должны быть ясными, точными, не содержать метафорических выражений.

Требование минимальности.


Информация о ообразовании:

Византийское влияние на дальнейшее развитие просвещения
В последующую эпоху влияние Византии в той или иной степени испытали Персия, Закавказье, арабский мир, Восточная и Западная Европа. Одновременно и культура Византии испытала влияние культур других народов. Переплетение разных ветвей единой культуры человечества придавало неповторимый колорит правос ...

Влияние психологического климата детского коллектива на личность ребенка
Результативность влияния коллектива на личность определяется самочувствием личности в коллективе. К нему относятся: удовлетворенность личности деятельностью, взаимоотношениями, руководством, защищенность личности в данном коллективе, ее внутреннее спокойствие. Все это определяется термином эмоциона ...

Экспериментальная работа по применению методики преподавания темы «Программирование в среде Scratch» в начальной школе
Целью проведенной экспериментальной работы была проверка методики преподавания темы «Программирование в среде Scratch» учащимся начальной школы. Задачи экспериментальной работы: 1) реализация разработанной методики преподавания темы «Программирование в среде Scratch» учащимся начальной школы; 2) ра ...

Категории

Copyright © 2019 - All Rights Reserved - www.agepedagog.ru