Задачи на проценты

Процент – это сотая часть. наглядная иллюстрация процента может быть продемонстрирована на метровой школьной линейке с делениями по 1 см. В данном случае 1 см является сотой частью линейки, т.е. 1%. Можно дать следующие задания:

показать на линейке 25%, 40% и т.д.

назвать число процентов, которые показываются на линейке.

Затем работу можно продолжить на отрезках, задавая вопросы, например:

Как показать 1% отрезка?

Ответ: отрезок нужно разделить на 100 равных частей и взять одну часть.

Или: покажите 5% и т.д. (см. рис. 8).

Рис. 8. Метод отложения на отрезке

Условимся, что деление отрезка на 100 равных частей делаем словно. Приступая к решению задач, их нужно сравнить с задачами предыдущего пункта, что ускорит усвоение приемов решения.

Пример №1. Ученик прочитал 138 страниц, что составило 23% всех страниц книги. Сколько страниц в книге?

Рис. 9. Графическое изображение задачи из примера №1

Объяснение: Число страниц в Кинге неизвестно. Ставим знак вопроса. Но число страниц составляет 100%. Показываем это на отрезке, выполняя деление на условные 100 равных частей (для слабоуспевающих детей внизу отрезка можно ставить еще и число 100). Затем отмечаем число 138 и показываем, что оно составляет 23%.

При решении задач предыдущего раздела и задач на проценты следует объяснить учащимся, что прежде всего нужно выяснить, сколько составляет 1 часть или 1%.

Так как 138 страниц составляют 23%, то находим, сколько приходится на 1%.

138 / 23 = 6 (стр.) – составляет 1%.

Так как число страниц в книге составляет 100%, то

6*100% = 600 (стр.) – в книге.

Ответ: В книге 600 страниц.

Пример №2. Мальчик истратил на покупку 40% имевшихся у него денег, а на оставшиеся 30 копеек купил билет в кино. Сколько денег было у мальчика?

Рис. 10. Графическое изображение задачи из примера №2

Объяснение: Количество всех денег неизвестно, ставим знак вопроса. Все деньги составляют 100%, поэтому разделим отрезок условно на 100 равных частей. Найдем, сколько процентов составляют 30 копеек.

100%-40% = 60% - составляют 30 копеек.

Обозначаем 60% на чертеже. Найдем, сколько составляет 1% далее объяснение аналогичное.

Пример №3. В школе 700 учащихся. Среди них 357 мальчиков. Сколько процентов учащихся этой школы составляют девочки?

Рис. 11. Графическое изображение задачи из примера №3

Объяснение: Число учащихся 700 человек, что составляет 100%. Отрезок условно делим на сто равных частей. (Само выполнение чертежа подсказывает ученику первое действие).

700 / 100 = 7 (чел.) – составляют 1%.

Узнаем, сколько процентов составляют мальчики. Для этого:

357 / 7 = 51%

(Можно сказать и так: «Сколько раз в 357 содержится по 7%?»)

Работаем с чертежом. Узнаем, сколько процентов составляют девочки.

100%-51%=49%

Ответ 49%

При решении задачи чертеж должен быть постоянно в поле зрения учащихся, так как является наглядной иллюстрацией задачи.

Пример №4. По плану рабочий должен был сделать 35 деталей. Однако он сделал 14 деталей сверх плана. На сколько процентов он перевыполнил план?

Рис.12. Графическое изображение задачи из примера №4

Решая задачу, нужно объяснить, что план всегда составляет 100% и поэтому 35 деталей составляют 100%. Чтобы узнать, сколько составляет 1% нужно:

35 / 100 = 0,35 (дет.)

Узнаем, сколько процентов составляют 14 деталей (сколько раз в 14 содержится по 0,35).

После изучения обыкновенных дробей и правил нахождения части числа и числа по части большинство задач лучше решать, переходя от процентов к дроби.

Пример №1. Ученик прочитал 138 страниц, что составило 23% всех страниц книги. Сколько страниц в книге?

23% составляет 0,23. Так как известна часть количества страниц, а нужно найти все количество, то выполняем действие деления (по правилу, записанному выше):

138 / 0,23 = 13800 : 23=600 (стр.)

Пример №2. Покупатель израсходовал в первом магазине 40% всех денег, а остальные - во втором. Сколько денег он израсходовал во втором магазин, если у него было 160 рублей?

40% составляют 0,4. так как известно все количество денег, а находим их часть, то выполняем действие умножения.

160*0,4 = 64 (руб.) – израсходовал покупатель в первом магазине.

Находим, сколько израсходовал покупатель во втором магазине.

160 - 64=96 (руб.)

Записываем ответ.


Информация о ообразовании:

Логопедическая работа по преодолению нарушений словообразования и словоизменения у дошкольников с общим недоразвитием речи III уровня
Целью формирующего эксперимента было развитие словообразования и словоизменения посредством дидактических игр При подборе дидактических игр учитывались возрастные особенности старших дошкольников. Материал формирующего эксперимента представлен ниже. Игры для закрепления формы множественного числа: ...

Задачи физического воспитания детей старшего дошкольного возраста в условиях ДОУ
Основной задачей физического воспитания, как и воспитания вообще в ДОУ, является формирование здорового, всесторонне развитого ребенка. Система работы в МДОУ "Колокольчик" предусматривает обязательное планомерное и систематическое воздействие на ребенка средствами физического воспитания. ...

Возрастные особенности старших подростков
Цель физического воспитания – оптимизация физического развития человека, всестороннего совершенствования свойственных каждому физических качеств и связанных способностей в единстве с воспитанием духовных и нравственных качеств, характеризующих общественно активную личность; обеспечить на этой основ ...

Категории

Copyright © 2019 - All Rights Reserved - www.agepedagog.ru